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(57) ABSTRACT

Certain example embodiments relate to a computer program
written in the programming language Java for emulating the
memory management of a computer program written in the
programming language C. The C program includes instruc-
tions for allocating a memory area, instructions for defining at
least one data structure, and instructions for defining at least
one pointer to the allocated memory area in accordance with
the at least one data structure. The Java program may include
instructions for: providing a Java byte array for emulating the
allocated memory area of the C program; and providing at
least one Java object for emulating the at least one data struc-
ture of the C program. The at least one Java object uses at least
one Java ByteBuffer object for emulating the at least one
pointer of the C program.

19 Claims, 1 Drawing Sheet
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1
JAVA PROGRAM FOR EMULATING THE
MEMORY MANAGEMENT OF A C
PROGRAM AND CORRESPONDING
METHOD

This application claims priority to EP 12 178 282.5 filed 27
Jul. 2012, the entire contents of which is hereby incorporated
by reference.

1. TECHNICAL FIELD

Certain example embodiments relate to a Java program for
emulating the memory management of a C program and to a
corresponding method.

2. BACKGROUND AND SUMMARY

In the past, computer sofiware was oftentimes pro-
grammed in the programming language C. Nowadays, on the
other hand, computer software is typically implemented
using more modern programming languages, such as Java.
Therefore, it is oftentimes desirable to migrate or convert a
given C program to Java for the sake of compatibility with
modern computing environments.

For example, the product webMethods JIS (Jacada Inter-
face Server) of applicant (cf.www.softwareag.com/de/prod-
ucts/az/jis/) is a so-called Web-enablement solution for inte-
grating legacy computer systems (such as a mainframe) into
modern computing environments (such as service-oriented
architectures). To this end, webMethods JIS contains code
which identifies patterns on a mainframe screen. This com-
plex recursive algorithm has been implemented in the C pro-
gramming language during the early 90’s and was rarely
modified ever since. When the JIS Java based server was
developed back in 1998, most of the runtime code was rewrit-
ten in Java, but the specific code for pattern identification, due
to its complexity, remained as a separate DL.I/Shared Object
which was accessed by the Java environment using the Java
Native Interface (JNI). Over the years, the decision not to
translate this code to Java caused the following problems for
the JIS product:

1. For each modification to the C code, the product had to
be recompiled separately for each of the six supported
operating systems (Windows, Unix flavours and
08/400) in order for the C code to utilize the operating
system specific libraries. This is not necessary for pure
Java code which can be compiled once and deployed to
any operating system which runs a Java virtual machine.

2. The product could not be packaged as a standalone Java
EE EAR file and deployed to an application server since
the C DLL/Shared Object could not be loaded from an
EAR file To workaround this problem, the product uti-
lized a complex, manual, application server specific,
procedure for identifying the location of the C DLL/
Shared Object to the application server.

3. It was impossible to run the code using a 64 bit JVM
since in order for the Java Native Interface to work, it
requires the C code and Java VM to use the same bit
model, but the C code was never ported to 64 bit since it
relied on pointer size of 4 bytes across the code.

In general, three alternatives were conceivable to solve
these problems: One option was to externalize the data type
representing a C pointer into a C macro which changes its size
between 4 bytes for 32 bit and 8 bytes for 64 bit based on a
compiler directive, then scan the code and modify all pointer
variables to use this macro. This would still require compila-
tion of the existing C code using both 32 bit and 64 bit
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compilers on all six supported operating systems. A second
option was to use a 3’ party tool to perform an automatic
translation from C to Java. Lastly, the third option was to
re-write the code from scratch in Java.

However, all of these alternatives have more or less severe
drawbacks when it comes to the aspect of memory manage-
ment, because C and Java differ significantly with respect to
the management of memory used by the respective computer
program. On the one hand, when programming in C, one has
direct access to the “raw” physical memory of the computer
system which operates the C program. To this end, the pro-
gramming language C provides functions such as malloc( )
which allow to directly allocate a block/area of raw memory.
Pointers can then be used for accessing the allocated memory
area via its memory address. In Java, on the other hand, all
memory has to be accessed via well-defined objects, so that
the actual Java program has no direct possibility to access the
physical memory of the underlying computer system. The
person skilled in the art will thus appreciate that it is quite
difficult to provide a Java program which correctly mimics
the behavior of a C program in terms of memory manage-
ment.

In this context, the US patent application No. 2011/
0289490 discloses an automated general purpose C-to-Java
programming language translator which, however, does not
address the difficult aspect of emulating C memory manage-
ment in Java. Further, several commercial products exist,
such as the C2J converter of Novosoft (cf. http://tech.no-
vosoft-us.com/product_c2j.jsp), Jazillian (cf.  http:/
www.markosweb.com/www/jazillian.com/), and NestedVM
(cf. http://nestedvm.ibex.org/). NestedVM creates a virtual
machine (VM) for the MIPS (Microprocessor without Inter-
locked Pipeline Stages) architecture using Java to simulate
the C memory model. However, the resulting Java code is not
human readable and therefore cannot be maintained, let alone
adapted to changed requirements at a later point in time.
Furthermore, scientific research has been performed in this
field (cf. e.g. S. Malabarba et al.: MoHCA-java: A Tool for
C++ to Java Conversion Support, and J. Martin et al.: Strate-
gies for Migration from C to Java), however, without giving
particular focus on the memory management discrepancies
between C and Java. Lastly, the article “Java equivalents of
malloc( ), new, free( ) and delete (ctd)” (cf. http://www.jav-
amex.com/java_equivalents/malloc.shtml) is based on rather
simplistic assumptions and individual APIs and does not dis-
cuss ways to model complex C data structures in Java.

In summary, it can be said that the prior art predominantly
deals with specific details of source to source migration, but
not with the difficult topic of representing C memory based
data structures simply and efficiently in Java. In particular,
when programming a Java program which emulates a given C
program, it has to be ensured that the Java program is able to
be run on a variety of different platforms, that the Java pro-
gram code is easily human-readable and thus can be main-
tained, adapted and extended to changed requirements, and
lastly, that the Java program uses the underlying processing
resources (in particular the memory of the underlying com-
puter system) in an efficient manner to ensure minimal
resource consumption and high performance.

It is therefore the technical problem underlying certain
example embodiments to provide an approach for emulating
the memory management of a C program in a Java program
which is adaptable, cross-platform compatible and/or pro-
vides efficient resource consumption and thereby at least
partly overcomes the above explained disadvantages of the
prior art.
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This problem is according to one example aspect solved by
a computer program written in the programming language
Java (Java program) for emulating the memory management
of'a computer program written in the programming language
C (C program). In the embodiment of claim 1, the C program
comprises instructions for allocating a memory area, for
defining at least one data structure, and for defining at least
one pointer to the allocated memory area in accordance with
the at least one data structure and the Java program comprises
instructions for:

a. providing a Java byte array for emulating the allocated
memory area of the C program;

b. providing at least one Java object for emulating the at least
one data structure of the C program;

c. wherein the at least one Java object uses at least one Java
ByteBuffer object for emulating the at least one pointer of
the C program.

Accordingly, the embodiment defines a Java program
which is binary compatible with a given C program, i.e. for
any given input, the Java program will produce the exact same
binary compatible output as the original C program. More
specifically, when the C program defines (a) an allocated
memory area, (b) a nested hierarchy of data structures, and (c)
a pointer casted to one of the data structures, the equivalent
Java program (a) uses a byte array to simulate the allocated
memory block, (b) uses standard Java classes to simulate the
C nested hierarchy of data structures, and (¢) models a C
pointer to a memory area using a ByteBufter object, auch as
the java.nio.ByteBuffer. Preferably, when the C program pro-
vides functions for iterating, reading and/or writing into the
memory area using the data structure pointer, the equivalent
Java program uses ByteBuffer backed Java objects to simu-
late iterating, reading and/writing to the memory area.

It is important to note that since there are various Java
Runtime Environments (JVM) for different computing plat-
forms, the example Java program is highly cross-platform
compatible, i.e. it can be run on any underlying hardware
system for which a corresponding JVM is available. More-
over, since the C data structures are emulated in the Java
program by well-defined Java objects (i.e. instances of corre-
sponding Java classes), the resulting Java code is particularly
easy to maintain, to adapt and/or extend.

In one aspect of certain example embodiments, the at least
one Java object for emulating the at least one data structure of
the C program uses bit operations to access the Java byte
array, while encapsulating the bit operations for higher-level
Java objects. Accordingly, when the at least one Java object is
used inside more complex Java objects (as is the case with
nested data structures; cf. the examples further below), the
Java object which actually accesses the byte array hides the
complex bit operations from the higher-level Java objects.
This leads to particularly well-structured and easily human-
readable code, which can be efficiently maintained, to
adapted and/or extended.

In another aspect of certain example embodiments, the at
least one data structure of the C program comprises an
unsigned C data type and the at least one Java object com-
prises a corresponding Java data type having an adequate size.
As the person skilled in the art will appreciate, Java does not
support the unsigned data types available in C. Therefore,
when representing a C data structure in Java, the unsigned C
data types need to be emulated using a larger Java data type.
For example, the unsigned C data type may be a 2 bytes
unsigned short C data type and the corresponding Java data
type is then a 4 byte Java int. It will, however, be appreciated
that the invention is not limited to the specific example of the
unsigned short C data type, but is similarly applicable to all
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unsigned data types available in C (e.g. unsigned char,
unsigned short, unsigned int, unsigned long, unsigned long
long; cf. Wikipedia “C data types” at http://en.wikipedia.org/
wiki/C_data_types for a comprehensive list of the C data
types).

In yet another aspect of certain example embodiments, the
at least one Java object specifies the endianness of the Java
byte array. As the person skilled in the art will appreciate, the
term “endianness” generally refers to the ordering of indi-
vidually addressable sub-components within the representa-
tion of a larger data item as stored in memory, wherein “little
endian” and “big endian” are known in the art. Java stores
information in memory using big endian format, while C uses
the endianness of the underlying operating system. There-
fore, the Java code may in this aspect specify and thus cor-
rectly reflect the endianness of the data used by the corre-
sponding C code.

As a first optimization to the above-described Java pro-
grams, the at least one Java ByteBuffer object used for emu-
lating the at least one pointer of the C program is passed as a
parameter to the Java class and/or defined as a member vari-
able of the at least one Java object used for emulating the at
least one data structure of the C program, and the at least one
Java class (and thus also the related object(s)) may provide
one or more static methods for accessing the Java ByteBuffer
parameter object (such as set and get methods), thereby
reducing object creation of the underlying Java class. Accord-
ingly, using static methods and passing the corresponding
ByteBuffer as a parameter to the static method instead of
creating a Java object with a ByteBuffer member variable
leads to Java programs which produce far less objects during
runtime. This, in turn, leads to considerable reduced memory
consumption and less garbage collection, thereby also
increasing the performance of the Java program.

A second way of reducing object creation, which may be
employed in addition or alternatively, is that the at least one
Java object uses an object pool for re-using Java objects.
Accordingly, instead of instantiating a new byte buffer
backed object each time it is needed, an already existing
object may be used, wherein an object pool is provided for
storing such existing objects which are no longer needed and
can thus be re-used.

As already explained further above, the Java program of
certain example embodiments is preferably binary compat-
ible with the original C program. This means that for any
given input the Java program produces the same output as the
C program.

Certain example embodiments are further directed to a
method for converting a computer program written in the
programming language C (C program) into a computer pro-
gram written in the programming language Java (Java pro-
gram), wherein the C program comprises instructions for
allocating a memory area, instructions for defining at least
one data structure, instructions for defining at least one
pointer to the allocated memory area in accordance with the at
least one data structure, and wherein the method comprises
the steps of providing a Java byte array for emulating the
allocated memory area of the C program, providing at least
one Java object for emulating the at least one data structure of
the C program, wherein the at least one Java object uses at
least one Java ByteBuffer object for emulating the at least one
pointer of the C program. Further advantageous modifica-
tions of embodiments of the techniques of certain example
embodiments are defined in further dependent claims.

3. SHORT DESCRIPTION OF THE DRAWING

In the following detailed description, presently preferred
embodiments of the invention are further described with ref-
erence to the following FIGURE:
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FIG. 1: A schematic view of a C program and an equivalent
Java program in accordance with an embodiment of the
invention.

4. DETAILED DESCRIPTION

In the following, a presently preferred embodiment of the
invention is described with respect to an exemplary C pro-
gram 1 and an exemplary Java program 2 as schematically
shown in FIG. 1. However, it should be appreciated that the
present invention is not limited to C, but may support any 4%
generation language (4GL). As can be seen, the exemplary C
program 1 defines:

an allocated memory area 10,

a nested hierarchy of data structures (note that only one

data structure 12 is exemplarily shown in FIG. 1),

a pointer 14 casted to one of the data structures, and

functions (not shown in FIG. 1) for iterating, reading and/

or writing into the memory area using the data structure
pointer.

Based on such a C program, it is the basic concept of certain
example embodiments to define an equivalent Java program
which:

is binary compatible with the C program, i.e. for any given

input it will produce the exact same binary compatible
output,

uses a byte array to simulate the allocated memory block,

uses standard Java classes to simulate the C nested hierar-

chy of data structures,

models a C pointer to a memory area using java.nio.Byte-

Buffer object(s), and

uses ByteBuffer backed Java objects to simulate iterating,

reading and/or writing to the memory area.

These and other aspects of embodiments of the present
invention will be described below along a simple example:

Exemplary C Program

The exemplary program 1 is written in the programming
language C and defines the following data structures 12
“POINT” and “LINE”:

typedef struct {
unsigned short x;
unsigned short y;
} POINT; // Represents a point on a plain
typedef struct {
POINT start;
POINT end;
} LINE; // Represents a line connecting its two points

As the person skilled in the art will appreciate, the data type
“unsigned short” used for variables x and y in the above C
data structure POINT occupies two bytes in memory and does
not have an equivalent Java data type.

Furthermore, the exemplary C program 1 also defines the
following operations (only the signatures are presented
below), which serve to calculate the length of a line and to
reverse the line direction, respectively:

long length(*LINE line); // calculate line length
void reverse(*LINE line); // switch start and end points
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Further, the following variables are declared in the present
example:

char *data;
POINT *point
LINE *line

Now, a memory area 10 is allocated to the variable “data”,
and two pointers 14 “point” and “line” are allocated to the
memory area 10:

data = malloc(SIZE); // SIZE represents an arbitrary size
data = ... read the data from a memory mapped file . . .
point = (POINT *)data

line = (LINE *)data

Each of these pointers 14 may now be used to perform
operations on the memory area 10, such as iteration, read and
write operations:

int pos;
char *mydata;
// Tterate over the memory area bytes
for (pos=0, mydata = data; pos < SIZE; pos++, mydata++) {
if (*mydata ! = 0) {
*mydata ++;

}

/* We can also iterate over the same memory area using the
POINT struct, so that each iteration moves 4 bytes */
for (pos=0, point = (POINT *)data; pos <
SIZE/sizeof(struct POINT); pos++, point++) {
if (*point.x ! =0) {
*point.x ++;

}

/* We can also iterate over the same memory area using a
LINE struct, so that each iteration moves & bytes and the
internal start and end POINT structures map nicely into
their corresponding memory locations based on pointer
offsets */
for (pos=0, line = (LINE *)data; pos < SIZE/sizeof(struct
LINE); pos++, border++) {

if (*line.start.x 1= 0) {

*line.start.x ++;

¥

¥

Attention is drawn to the following characteristics of the C
code shown above:

1. The data, point and line variables used above are all based
on the same memory area 1. Therefore each change to one
of them is immediately reflected in all others.

2. It is possible to arbitrarily cast pointers 14 of the same
memory area 10 to various pointer types 12 and treat each
such pointer 14 as a data structure pointer based on the
same memory area 10.

Prior Art Approaches for Representing the
Exemplary C Program in Java

In order to model the behavior of the above-presented C
program 1 in the programming language Java, the person
skilled in the art will consider the following two approaches:

One approach is to create a Java class corresponding to
each C data structure 12, i.e. create a Java class representing
the above POINT data structure 12, and another class repre-
senting the above LINE data structure 12. This approach,
however, will not work, since in Java each object created from
such class files will use its own memory area.
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Accordingly, if a LINE object and a POINT object are
created based on the same data, these objects will be inde-
pendent objects. Updating the value of one object will not be
reflected in the other object. As long as the underlying
memory area is read only, this will work, but there is no way
to update the memory area and to reflect the changes in all
created objects.

A second approach would be to model the memory area 10
as a Java byte array. This is generally possible, but will create
code which is notoriously difficult to understand and there-
fore hardly adaptable and maintainable. For example, to iter-
ate over a C like LINE struct, one would have to generate the
following Java code:

@Test
public void testSimple( ) {
// Equivalent Java code
// Tterate over a C LINE struct each iteration moves
8 bytes
byte[ ] bytes = {0, -1,02,04,0,6,0,0x1F,0,12,
014,0,16};
for (int pos=0; pos < bytes.length; pos += 8) {
// *line.start.x 1= 0
if (bytes[pos] != 0| bytes[pos+1] !=0) {
// *line.start.x ++;
if (bytes[pos+1] == (XFF) {
// high byte reached
if (bytes[pos] == OXFF) {
bytes[pos] =&
bytes[pos+1] =&
}else {
bytes[pos]++;
bytes[pos+1] =&

¥
}else {
bytes[pos+1]++;

¥
}
byte[ ] expectedBytes =
{000,2,04,06,00x20,0,12,0,14,016};
Assert.assertTrue(Arrays.equals(expected Bytes,
bytes));

As the person skilled in the art will appreciate, it is hardly
possible to properly maintain such code, let alone to adapt the
code to changed requirements at some later point in time
(nevertheless, the above code is an example of the code typi-
cally generated by conventional C-to-Java translators).

Preferred Embodiment of the Invention

The preferred embodiment of the invention is based on the
concept of modeling buffer-based primitive types and then
reusing them inside higher-level Java objects.

To this end, all buffer-based objects implement a Bufter-
BasedObject interface, which is defined as follows:

public interface BufferBasedObject {
/**
* Size in bytes used by this object
* (@return size in bytes
*/
public int getBytesLength( );
/**
* A copy of the underlying buffer used by this object
* Changes to this copy are not reflected in the object
* @return copy of the buffer used by the object
*/
public byte[ ] getBytesView( );

8

By implementing the above Java interface, the above-ex-
plained unsigned short data type of the programming lan-
guage C can be modeled as shown in the following Bufter-
BasedUnsignedShort class:

public class BufferBasedUnsignedShort implements
BufferBasedObject {
ByteBuffer buffer;
private final static int BYTE_LENGTH = 2;
// class construction not listed
public int get( ) {
return buffer.getShort(9) & OxFFFF;

10

public void set(int x) {
buffer.putShort(f) (short)(x & ¢xFFFF));
15
public int getBytesLength( ) {
return BYTE _LENGTH;

The person skilled in the art will note how the C program-
ming language unsigned short data type is modeled using bit
operations on the Java int data type inside the get( ) and set(
)methods.

Now, itis possible to create a higher-level Point class using
two BufferBasedUnsignedShort member variables for hold-
ing the Point coordinates:

25

public class Point implements BufferBasedObject {
BufferBasedUnsignedShort x,y;
// class construction not listed
public int getX() {
return x.get( );

30

public int getY() {
35 return y.get( );
public void setX(int val) {
x.set(val);

public void setY (int val) {
40 y.set(val);
public int getBytesLength( ) {
return x.getBytesLength( ) + y.getBytesLength( );

public byte[ ] getBytesView( ) {
byte[ ] bytes = new byte[getBytesLength( )];
System.arraycopy(x.getBytesView( ), @) bytes, 0,
x.getBytesLength( ));
System.arraycopy(y.getBytesView( ), 0, bytes,
X. getBytesLength( ),
y.getBytesLength( ));
return bytes;
50 1

45

Further, a Line class can be created using two Point mem-
ber variables for holding the line start and end points and

o modeling the length calculation:

public class Line implements BufferBasedObject {
Point start;
Point end;
// class construction not listed
public long length( ) {
return Math.round(Math.sqrt(
(end.getX( ) — start.getX()) *
(end.getX( ) — start.getX()) +
(end.getY( ) — start.getY()) *
(end.getY( ) — start.getY())));

60

65
public void reverse( ) {
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-continued

Point temp = start;
start = end;
end = temp;

// interface implementation not listed

}

It is notable that the above Line class is completely
unaware that the Point class used therein is buffer-based.

Given the above-explained Point and Line classes, it is now
possible to iterate, read and write to a memory area repre-
sented as a Java byte array, using the following Java code.
Note that every change made to an object is immediately
reflected in the original byte array:

@Test
public void iterateOverMemoryArea( ) {
byte[ ] bytes =
{01,02,04,0,6,011,012,014,016};
int pos =&
while (pos < bytes.length) {
Line line = new Line(bytes, pos);
line.reverse( );
pos += line.getBytesLength( );
}
byte[ ] expectedBytes =
{04,06,01,02,014,016,011,012};
Assert.assertTrue(Arrays.equals(expected Bytes,
bytes));
}

@Test
public void
changesToPointObjectsAreReflectedInLineObject( ) {
byte[ ] bytes ={0,1,0,2,0,4,0, 6};
Point start = new Point(bytes);
Point end = new Point(bytes,
start.getBytesLength( ));
Line line = new Line(bytes, 0);
Assert.assertEquals(5, line.length( ));
end.setX(7);
end.setY(10);
Assert.assertEquals(10, line.length( ));

Characteristics of the Preferred Embodiment of the
Invention

ByteBuffer usage—The java.nio.ByteBuffer class was
introduced in Java 1.4 as part of the java.nio package. Essen-
tially, it encapsulates a memory area and current pointer and
provides convenient methods for reading and writing primi-
tive data types into the backed memory area. Certain example
embodiments utilize the ByteBuffer object 24 to create
buffer-based objects which mimic the C code ability to map
struct into a memory area.

Signed and Unsigned data types—One difference between
C and Java is that Java does not support the C unsigned data
types. This means that when representing a C data structure
using Java, the unsigned C data types needs to be emulated
using a larger Java data type. For example, the 2 bytes
unsigned short C data type has to be emulated using a 4 byte
Java int. This technique is demonstrated by the BufferBase-
dUnsignedShort class shown further above.

Little endian and Big endian—1Java always stores informa-
tion in memory using the well-known big endian format,
while C uses the endianness of the underlying operating sys-
tem. Therefore, when converting C code to Java, the Java code
needs to correctly reflect the endianness of the data used by
the C code.
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10
The BufferBasedUnsignedShort class shown further above
uses the ByteBuffer order property to represent the endian-
ness of the underlying data. When building a BufferBasedUn-
signedShort instance, the code can specify what will be the
endianness of the buffer used by this instance using the fol-
lowing code:

BufferBasedUnsignedShort x = new
BufferBasedUnsignedShort.Builder( ).data(bytes).
order(ByteOrder. LITTLE_ENDIAN).build( );

The default value is ByteOrder.BIG_ENDIAN.

Array backed ByteBuffer vs. direct ByteBuffer—In Java,
memory mapped data can be backed by an actual Java byte
array 2, or by a direct byte buffer which maps to a memory
mapped file, depending on the implementation. Array backed
data is obtained when reading a binary resource into a Java
byte array, the resulting buffer based object will be backed by
an actual Java byte array. A direct ByteBuffer is obtained
when using a memory mapped file, e.g. using the method
java.nio.channels.FileChannel map( ).

When constructing a BufferBasedUnsignedShort instance,
the code can use either a byte array to create an array backed
buffer or a byte buffer which enables the usage of a direct
buffer, for example:

@Test
public void getDirectPoint( ) {
byte[ ] bytes = {-x01, -x(2, 0x7F, —0x01 };
ByteBuffer directBuffer =
ByteBuffer.allocateDirect(4);
directBuffer.put(bytes);
// The point object is constructed from a byte
buffer not from a byte array
Point point = new Point(null, ¢, null,
directBuffer);
Assert.assertEquals(65534, point.getX( ));
Assert.assertEquals(32767, point.getY( ));

}

Optimization Techniques

The output of the buffer based Java objects 22 is binary
identical to an equivalent C code given the same input. How-
ever, the performance of the Java code 2 may be considerably
slower and less scalable than the equivalent C code. The main
reason is that for a large enough data structure, Java will
create a large number of small objects which will consume
additional memory and which also need to be garbage col-
lected. In the exemplary code shown above, a single iteration
over a data structure of size 8 Mega Bytes will create roughly
1,000,000 Line objects, 2,000,000 Point objects and 4,000,
000 BufferBasedUnsignedShort objects. All these objects
need to be stored in memory and later garbage collected. This
can cause two severe technical problems:

1. Excessive Memory Consumption
2. Slow Performance Due to Excessive Garbage Collection

In fact, the inventor found that an implementation such as
the one demonstrated above may consume 10 times more
memory and run 10 times slower, as compared to an equiva-
lent C code.
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In order to improve the performance and to reduce the
memory load, the following techniques may thus be
employed (which will be explained in more detail below):

1. Using Static Methods to Reduce Object Creation
2. Implementing Object Pooling to Reduce Object Creation
Optimization Technique: Static Methods

Using this technique, instead of creating two BufferBase-
dUnsignedShort objects for each Point object, we make the
ByteBuffer a member variable of the Point class, and imple-
ment BufferBasedUnsignedShort.get( ) and BufferBasedUn-
signedShort.set() as static methods passing the ByteBuffer as
parameter:

public static int get(ByteBuffer buffer) {
return buffer.getShort(buffer.position( )) & @xFFFF;

public static void set(ByteBuffer buffer, int x) {
buffer.putShort(buffer.position( ), (short) (x &
OXFFFF));

The technical advantage of this technique is that it elimi-
nates the creation of two BufferBasedUnsignedShort objects
per Point object (since static methods are used) and thus
significantly reduces memory consumption and/or garbage
collection. On the other hand, the disadvantage is that the
higher-level objects (“Point” in our case) need to create and
store the low-level ByteBuffer object thus complicating the
implementation to some extent.

Optimization Technique: Object Pooling

The inventor further found that a simple object pool imple-
mentation considerably reduces object creation and/or gar-
bage collection. To this end, each pooled object may imple-
ment the Reusable interface:

public interface Reusable {
public Reusable reset( );

}

The reset( ) method is responsible for re-initializing the
object state to its default state. For example, for BufferBase-
dUnsignedShort the following code can be implemented:

public Reusable reset( ) {
buffer = null; // forget your existing state
return this;

}

Using this technique, instead of creating two new Buffer-
BasedUnsignedShort objects every time a Point object is
created, we instead lookup these objects in the object pool and
invoke their reset( ) method in order to restore the objects to
their default state. The disadvantage of this technique, on the
other hand, is that forgetting to reset a member variable before
reusing an object can result in subtle bugs, which are hard to
detect.

SUMMARY

Summing up the above, certain example embodiments
generally provide an advantageous way of mapping the
memory requirements of data structures 12 in the program-
ming language C (and other similar languages) to the pro-
gramming language Java. The technical advantages of the
proposed approach are that the resultant code 2 is easily
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readable and thus understandable, maintainable and adapt-
able and this is achieved without significantly compromising
performance. It should be noted that although a preferred
embodiment of the invention concerns the programming lan-
guage C as the original program language, the present inven-
tion is not limited to C, but is also applicable to other C-like
non-Java languages, and more generally to any 47 generation
programming language (4GL), such as Software AG’s Natu-
ral memory constructs.

It will be appreciated that the various programs disclosed
herein may be stored on any suitable storage medium (tran-
sitory or non-transitory), and may be executed in accordance
with a suitable computer system that includes processing
resources such as, for example, at least one processor and a
memory. Such computer systems may be implemented in a
networked or other environment. It also will be appreciated
that the various objects disclosed herein may be memory
resident at some points and, in this regard, may be stored in
volatile memory areas or persistent storage areas (e.g., such
as, for example, disk). The programs may be self-contained
and/or implemented as one or more modules executable by
one or more processors in or across one or more computers or
computer systems, in different example embodiments.

What is claimed is:

1. A non-transitory computer readable medium tangibly
storing a Java computer program written in the Java program-
ming language for emulating the memory management ofa C
computer program written in the C programming language,

wherein the C program comprises:

instructions for allocating a memory area,

instructions for defining at least one data structure,

instructions for defining at least one pointer to the allo-
cated memory area in accordance with the at least one
data structure; and

wherein the Java program comprises instructions for:

providing a Java byte array for emulating the allocated
memory area of the C program;

providing at least one Java object, different from the Java
byte array, for emulating the at least one data structure
of the C program;

wherein the at least one Java object uses at least one Java
ByteBuffer object for emulating the at least one
pointer of the C program;

and uses bit operations to access the Java byte array in

accordance with the at least one Java object.
2. The computer readable medium of claim 1, wherein said
access comprises encapsulating the bit operations for higher-
level Java objects.
3. The computer readable medium of claim 1, wherein the
at least one data structure of the C program comprises an
unsigned C data type and wherein the at least one Java object
comprises a corresponding Java data type having an adequate
size.
4. The computer readable medium of claim 1, wherein the
unsigned C data type is a 2 bytes unsigned short C data type
and wherein the corresponding Java data type is a 4 byte Java
int.
5. The computer readable medium of claim 1, wherein the
at least one Java object specifies the endianness of the Java
byte array.
6. The computer readable medium of claim 1, wherein:
the at least one Java ByteBuffer object is defined as a
member variable of the at least one Java object; and

the at least one Java object provides one or more static
methods for accessing the Java ByteBuffer object in
order to reduce object creation.
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7. The computer readable medium of claim 1, wherein the

at least one Java object uses an object pool for re-using Java
objects in order to reduce object creation.

8. The computer readable medium of claim 1, wherein for

any given input the Java program produces the same output as
the C program.

9. The non-transitory computer readable medium accord-

ing to claim 1, wherein emulating the at least one pointer of
the C program includes using the at least one Java ByteBuffer
object to emulate use of the pointer to map the atleast one data
structure to the allocated memory area.

10. The non-transitory computer readable medium accord-

ing to claim 9, wherein emulating the at least one pointer of
the C program includes using the at least one Java ByteBuffer
object to access the Java byte array in accordance with a data
type of the at least one Java object.

11. The non-transitory computer readable medium accord-

ing to claim 1, wherein the at least one Java object includes a
first Java object and a second Java object, wherein the second
Java object is a member of the first Java object and emulates
a second data structure which is nested in a first data structure
of the C program, and wherein the second Java object
includes the at least one Java ByteBuffer object as a member
to access the Java byte buffer in accordance with the second
Java object.

12. A method for converting a C computer program written

in the C programming language into a Java computer program
written in the Java programming language Java,

wherein the C program comprises:

instructions for allocating a memory area, instructions for
defining at least one data structure,

instructions for defining at least one pointer to the allocated
memory area in accordance with the at least one data
structure; and

wherein the method comprises:

providing a Java byte array in a memory of a computer
system for emulating the allocated memory area ofthe C
program;

providing at least one Java object, different from the Java
byte array, for emulating the at least one data structure of
the C program;

wherein the at least one Java object uses, in connection
with at least one processor, at least one Java ByteBuffer
object for emulating the at least one pointer of the C
program;

and uses bit operations to access the Java byte array in
accordance with the at least one Java object.
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13. The method of claim 12, wherein, said access com-
prises encapsulating the bit operations for higher-level Java
objects.
14. The method of claim 12, wherein the at least one data
structure of the C program comprises an unsigned C data type
and wherein the at least one Java object comprises a corre-
sponding Java data type having an adequate size.
15. The method of claim 14, wherein the unsigned C data
type is a 2 bytes unsigned short C data type and wherein the
corresponding Java data type is a 4 byte Java int.
16. The method of claim 12, wherein the at least one Java
object specifies the endianness of the Java byte array.
17. The method of claim 12, wherein:
the at least one Java ByteBuffer object is defined as a
member variable of the at least one Java object; and

the at least one Java object provides one or more static
methods for accessing the Java ByteBuffer object in
order to reduce object creation.

18. The method of claim 12 wherein the at least one Java
object uses an object pool for re-using Java objects in order to
reduce object creation.

19. A computer system, including at least one processor
and a memory, the computer system being configured to use
the at least one process and memory in order to cause a Java
computer program written in the Java programming language
to emulate the memory management of a C computer pro-
gram written in the C programming language,

wherein the C program comprises:

instructions for allocating a memory area, instructions for

defining at least one data structure,

instructions for defining at least one pointer to the allocated

memory area in accordance with the at least one data
structure; and

wherein the Java program comprises instructions to:

provide a Java byte array to emulate the allocated memory

area of the C program;
provide at least one Java object, different from the Java
byte array, to emulate the at least one data structure of the
C program,;

wherein the at least one Java object uses at least one Java
ByteBuffer object for emulating the at least one pointer
of the C program;

and uses bit operations to access the Java byte array in

accordance with the at least one Java object.

#* #* #* #* #*



